Tourist attractions capping visitor NUMBERS MISG 2023

P Shabalala (UNISA), D Mathebula (UNISA), Z Chazuka (UNISA), E Akama (AIMS), S Bam (SPU), S Gakii (AIMS), S Jokweni (UNIZULU), M Kiarie (AIMS), A Mwangi (AIMS), K.M.L Momo (AIMS), S Mtshali (UJ), S Ngwenya (Wits)

January 20, 2023

P Shabalala (UNISA), D MathebTourist attractions capping visito Ianuary 20, 2023 1/24

OUTLINE

INTRODUCTION

- 2 Objectives of the project
- **3** WHAT ARE THE TOURISM ATTRACTIONS CAPPING VISITOR NUMBERS?
- (2) Model formulation: Tourism attractions capping visitor numbers model
- 5 Model I: Compartmental model
- 6 Results
- 7 Approach II
- 8 Activities and PCC formula description

- 20

As part of revitalisation of tourist attractions, determining the number of visitors that should be welcomed per day (capping visitor numbers) is one of the key mergers to put in place.

The assumption is that once the attraction revitalisation process is complete, through marketing the attraction could attract more tourist due to its unique offerings.

This success will be financially improved when the site manager's are able to directly and correctly charge visitors.

・ロット 御り とうりょうり しつ

OBJECTIVES OF THE PROJECT

Develop and solve a tourism mathematical model that will:

- determine the social carrying capacity of a tourist attraction.
- track the flow of the activities at a specific time

WHAT ARE THE TOURISM ATTRACTIONS CAPPING VISITOR NUMBERS?

- The carrying capacity of tourism is defined as the highest tourism presence at a destination that does not interrupt ordinary activities of residents and does not preclude tourists from appreciating the destination
- The carrying capacity application has the greatest potential in protected areas, in frequently visited cultural and natural attractions, and in relation to sustaining of the lifestyle of the local community and tourism destination potential in general.

MODEL FORMULATION: TOURISM ATTRACTIONS CAPPING VISITOR NUMBERS MODELS

PARAMETERS			
PARAMETERS	DESCRIPTION		
α1α4	Rate of change of population		
$\gamma_1\gamma_{12}$	Rate of change between activi-		
	ties		
$\beta_1\beta_4$	Rate of change between activi-		
	ties		
Λ	Recruitment rate		
μ	Removal rate		

P Shabalala (UNISA), D MathebTourist attractions capping visito 🦳 January 20, 2023 6/24

イロト 不得下 イヨト イヨト 二日

numbers?

VARIABLES

VARIABLES		
VARIABLES	DESCRIPTION	
Р	Population	
W	Wild life	
S	Swimming pool	
R	Restaurant	
G	Guided walk	

P Shabalala (UNISA), D MathebTourist attractions capping visito $\,$ January 20, 2023 $\,$ 7 / 24 $\,$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FIGURE 1: Activity model

Model I: Compartmental model

$$\frac{dP}{dt} = -P\left(\alpha_1W + \alpha_2S + \alpha_3R + \alpha_4G + \mu\right) + \Lambda$$

$$\frac{dW}{dt} = W\left(\alpha_1P + \gamma_2S + \gamma_8R + \gamma_{10}G - \gamma_1S - \gamma_9G - \gamma_7R - \beta_1\right)$$

$$\frac{dS}{dt} = S\left(\alpha_2P + \gamma_1W + \gamma_{11}G + \gamma_4R - \gamma_3R - \gamma_2W - \gamma_{10}G - \beta_2\right) \quad (1)$$

$$\frac{dR}{dt} = R\left(\alpha_3P + \gamma_3S + \gamma_4W + \gamma_6G - \gamma_4S - \gamma_5G - \gamma_8W - \beta_3\right)$$

$$\frac{dG}{dt} = G\left(\alpha_4P + \gamma_5R + \gamma_9W + \gamma_{12}S - \gamma_6R - \gamma_{11}S - \gamma_{10}W - \beta_4\right)$$

P Shabalala (UNISA), D MathebTourist attractions capping visito January 20, 2023 9/24

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CARRYING CAPACITY

Using the general formula for the carrying capacity, we can determine the capping number for the nature reserve

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) \tag{2}$$

where

r maximum population growth rate

N population size

K population carrying capacity $\frac{dN}{dt}$ rate of population change

P Shabalala (UNISA), D MathebTourist attractions capping visito $\,$ January 20, 2023 $\,$ 10 / 24 $\,$

numbers?

FIGURE 2: Carrying capacity [1]

P Shabalala (UNISA), D MathebTourist attractions capping visito January 20, 2023 11/24

<ロト <問ト < 目ト < 目ト

∃ 990

MODEL I CONT..

From the system of equations (1) we know that

$$\frac{dP}{dt} + \frac{dW}{dt} + \frac{dS}{dt} + \frac{dR}{dt} + \frac{dG}{dt} = \frac{dN}{dt}$$
(3)

(4)

2

Therefore, from Logistic equation we can establish that

$$\frac{dN}{dt} = \Lambda - (W\beta_1 + S\beta_2 + R\beta_3 + G\beta_4 + \mu P)$$
(5)

< 日 > < 同 > < 回 > < 回 > < 回 > <

P Shabalala (UNISA), D Matheb Tourist attractions capping visito 12 / 24

RESULTS

FIGURE 3: Nature reserve carrying capacity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

3

P Shabalala (UNISA), D MathebTourist attractions capping visito January 20, 2023 13/24

- Due to lack of adequate data, we assumed the parameters values used to determine the carrying capacity.
- From Figure 3 the managers would be able to adjust the carrying capacity based on the algorithm.

FIGURE 4: Dynamics of the model

A D N A B N A B N A B N

Approach II

Physical Carrying Capacity (PCC):

- This is the maximum number of visits that is possible to admit during a day
- Formula PCC = Area of region $\times \frac{v}{a} \times Rf$ where; $\frac{v}{a} = \frac{1}{4^2} = \frac{1}{16}$ (the amount of space every visitor needs to move freely), the assumption here is that under normal conditions 4 m^2 is allocated per individual. Rf = 1 (daily number of visits to a certain place)

(ロトス値を入出する) ほうろくの)

Approach II Cont...

Real Carrying Capacity (RCC):

- Is the maximum number of visits that is possible after applying a series of correction factors to the PCC.
- Formula $ECC = PCC \times F_{cx}$ where; where F_{cx} is the correction factor.

Effective Carrying Capacity (ECC):

- Is the maximum number of visitors to a place that the existing management can handle in a sustainable manner.
- Formula
 ECC = RCC× management capacity.

ACTIVITIES AND PCC FORMULA DESCRIPTION

ACTIVITIES	PCC CALCULATIONS		
Swimming pool	Average no of swimmers at a time × <u>Total period open</u> <u>Average period per person</u>		
Wildlife	Number of available vehicles \times Number of		
	passengers per vehicle \times number of trips per		
	day		
Guided Walk	Number of available guides \times Number of		
	people being guided $ imes$ number of walks per		
	day		
Restaurant	Number of seats $ imes$		
	total time the restaurant is opened		
Picnic Area	Total picnic surface area average area per group \times average number of		
	people per group $\times \frac{Total \ open \ time}{average \ time \ a \ group \ takes}$		

P Shabalala (UNISA), D MathebTourist attractions capping visito January 20, 2023 18/24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

ACTIVITIES PCC DESCRIPTION

DESCRIPTIONS			
ACTIVITIES	PCC CALCULATIONS		
Bird Hide	number of people at a time $\times \frac{Total \ time \ picnic \ area \ is \ opened}{average \ a \ person \ stays \ at \ the \ picnic \ area}$		
Accommodation	\sum Number of rooms per dormitory type \times total number of people per room		
Braai Area	Number of braiing facilities \times average number of people per facility $\times \frac{total \ open \ period}{average \ period \ per \ group}$		

P Shabalala (UNISA), D MathebTourist attractions capping visito 🦳 January 20, 2023 19/24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

ACTIVITIES AND THEIR PCC,RCC AND ECC CALCULATIONS

DESCRIPTIONS			
ACTIVITIES	PCC	RCC	ECC
Swimming	$14 \times 6 + 17 \times 6 + 14 \times 12 + 17 \times 2 =$	$588 \times \frac{4}{12} =$	$418 \times 1 =$
pool	588	418	418
Wildlife	$2 \times 10 \times 2 = 40$	$40 \times \frac{9}{12} = 30$	30 × 1 =
			30
Guided walk	$2 \times 20 \times 2 = 80$	$80 \times \frac{9}{12} = 60$	$60 \times 1 =$
		12	60
Restaurant	$100 imes rac{14}{2} = 700$	$700 \times 1 =$	700×1 =
	-	700	700
Picnic	$2 \times 10 \times \frac{12}{4} = 60$	$60 \times \frac{9}{12} = 45$	45

イロト 不得 トイヨト イヨト

numbers?

ACTIVITIES AND THEIR CALCULATIONS CONT...

DESCRIPTIONS				
ACTIVITIES	PCC	RCC	ECC	
Bird Hide	$10 \times \frac{12}{4} = 30$	$30 \times \frac{9}{12} = 22$	22	
Accomm.	$12 \times 29 + 16 \times 2 + 3 \times 4 + 15 \times$	$542 \times 1 =$	542	
	$2 + 20 \times 6 = 542$	542		
Braai	$16 imes 4 imes rac{12}{4} = 192$	$192\frac{9}{12} =$	144	
		144		

P Shabalala (UNISA), D MathebTourist attractions capping visito 120, 2023 - 21/24

numbers?

CARRYING CAPACITY

Total carrying capacity = \sum ECC of all activities = 1961

P Shabalala (UNISA), D MathebTourist attractions capping visito $\,$ January 20, 2023 $\,$ 22 / 24 $\,$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

- M A Hixon, Carrying Capacity, *Elsevier*, **2008**, Oregon State University, Corvallis, OR, USA
- McCool, Stephen F and Lime, David W Tourism carrying capacity: tempting fantasy or useful reality?. *Journal of sustainable tourism Taylor & Francis*2001, *9 (5)*, 372–388.

THANK YOU-:)

P Shabalala (UNISA), D MathebTourist attractions capping visito $\,$ January 20, 2023 $\,$ 24 / 24 $\,$

イロト イポト イヨト イヨト